Isomorphic Holomorphs

Timothy Kohl
Boston University
May 29, 2024

Holomorphs

Let G be a finite group.
As an abstract group, the holomorph is the semi-direct product

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)
$$

where $\operatorname{Aut}(G)$ acts in the natural way on the first coordinate.

Our primary interest is the realization of the holomorph in the setting of regular representations of G in a group of permutations $B=\operatorname{Perm}(X)$.

As detailed in [4, Theorem 6.3.2], for G embedded as $\lambda(G)$ in $B=\operatorname{Perm}(G)$ we can identify

$$
\begin{equation*}
\operatorname{Hol}(G)=\operatorname{Norm}_{\mathrm{B}}(\lambda(G))=\rho(G) A_{z} \tag{1}
\end{equation*}
$$

where $\rho(G)$ is the image of the right regular representation and A_{z} is the stabilizer of any point $z \in G$, where $A_{z} \cong \operatorname{Aut}(G)$.

Recall that a permutation group $N \leq \operatorname{Perm}(X)$ is regular if it acts transitively and freely.

We observe that

$$
\begin{equation*}
\operatorname{Hol}(G)=\operatorname{Norm}_{\mathrm{B}}(\lambda(G))=\operatorname{Norm}_{\mathrm{B}}(\rho(G)) \tag{2}
\end{equation*}
$$

where, if G is non-abelian, we have that $\lambda(G) \neq \rho(G)$ as subgroups of B.
Beyond $\lambda(G)$ and $\rho(G)$, there are other regular subgroups of $\operatorname{Perm}(G)$ that have normalizer equal to $\operatorname{Hol}(G)$.

The ubiquitousness of regular permutation groups is further highlighted by the following important fact, which can be found in [2, Lemma 1], but also appears earlier in the literature.

Proposition

If N, N^{\prime} are regular subgroups of S_{n} that are isomorphic as abstract groups, then they are conjugate as subgroups of S_{n}.
and so
\{conjugacy classes of regular subgroups $\} \leftrightarrow\{$ isomorphism classes $\}$

And since
$\operatorname{Norm}_{\mathrm{B}}(\lambda(G))=\rho(G) A_{z}$
where $\rho(G)=\operatorname{Cent}_{B}(\lambda(g))$ then for any regular $N \leq B=\operatorname{Perm}(X)$ we have

$$
\operatorname{Norm}_{\mathrm{B}}(N)=N^{o p p} A_{\tau(z)} \cong \operatorname{Hol}(G)
$$

where

$$
N^{\text {opp }} \stackrel{\text { def }}{=} \operatorname{Cent}_{\mathrm{B}}(N)
$$

for $N=\tau \rho(G) \tau^{-1}$

We will use the term 'regular representation' of a group G, where $|G|=n$ to mean the image of an embedding

$$
\chi(G) \leq B=\operatorname{Perm}(X)
$$

for some set X where $|X|=n$, which acts regularly on X.
Clearly $\lambda(G)$ and $\rho(G)$ in Perm (G) are basic examples, but, again, by no means is regularity tied to left or right actions.

And indeed, where appropriate, we shall work with regular representations in S_{n} itself.

Even though our focus is on regular permutation groups and their normalizers, one may contemplate $\operatorname{Norm}_{\mathrm{B}}(N)$ when N is a non-regular subgroup of B.

In these situations, there is frequently a distinction between $\operatorname{Norm}_{\mathrm{B}}(N)$ as compared with $\operatorname{Hol}(N)$ although sometimes there isn't a distinction!

The regularity of N guarantees that $\operatorname{Norm}_{\mathrm{B}}(N) \cong \operatorname{Hol}(N)$, but when N is non-regular, the structure of the normalizer is potentially quite different than that of the abstract holomorph.

Equal vs Isomorphic Normalizers

What N and $N^{o p p}$ exemplify is that two distinct regular subgroups of B can have equal normalizers, hence obviously isomorphic holomorphs. However, our interest is when, for two non-isomorphic groups G_{1}, G_{2} of the same order, is it the case that $\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$.

More broadly we consider when there exists regular representations $\mu\left(G_{1}\right)$ and $\nu\left(G_{2}\right)$ in a common symmetric group $B=\operatorname{Perm}(X)$ for which $\operatorname{Norm}_{\mathbf{B}}\left(\mu\left(G_{1}\right)\right)=\operatorname{Norm}_{\mathbf{B}}\left(\nu\left(G_{2}\right)\right)$.

Before diving into this, we point out that regular permutation groups are of central importance in the study of Hopf-Galois structures on separable extensions, as elucidated in [3].

In particular one enumerates, for a fixed finite group Γ, regularly represented in some $B=\operatorname{Perm}(X)$, those regular $N \leq B$ of the same order as Γ, for which

$$
\Gamma \leq \operatorname{Norm}_{\mathrm{B}}(N)
$$

where N in particular need not be isomorphic to Γ.
The totality of these, where N belongs to some particular class [G] of group of the same order as Γ, is denoted $R(\Gamma,[G])$.

The relevance of isomorphic/equal holomorphs to this is that if $N \cong G_{1}$ is regular, where G_{1} and G_{2} can be regularly represented in $B=\operatorname{Perm}(X)$ so that $\operatorname{Norm}_{\mathbf{B}}\left(\mu\left(G_{1}\right)\right)=\operatorname{Norm}_{\mathrm{B}}\left(\nu\left(G_{2}\right)\right)$ and if

$$
\Gamma \leq \operatorname{Norm}_{\mathrm{B}}(N)
$$

one has that there exists a regular $M \leq B$ (isomorphic to G_{2}) for which $\operatorname{Norm}_{\mathrm{B}}(M)=\operatorname{Norm}_{\mathrm{B}}(N)$ and therefore

$$
\Gamma \leq \operatorname{Norm}_{\mathrm{B}}(M)
$$

and so we have a bijection

$$
R\left(\Gamma,\left[G_{1}\right]\right) \leftrightarrow R\left(\Gamma,\left[G_{2}\right]\right)
$$

More recently, regular permutation groups and Hopf-Galois structures are known to have an important connection to skew-braces as well, as detailed in [8], which we shall say a little bit about later on, in connection with our study of isomorphic holomorphs.

Isomorphic Holomorphs

We can remove from consideration those pairs $\left(G_{1}, G_{2}\right)$ where one or the other are abelian, as demonstrated by Mills in [7]:

Theorem

[7, Theorem 4] If a finite abelian group G_{1} and an arbitrary group G_{2} have isomorphic holomorphs, then G_{1} and G_{2} are isomorphic.

We recall a very classical result, an early reference to which is given in [7], which has also been previously discussed by the presenter in [5] and [6].

Consider the dihedral and quaternionic (dicylic) groups of order $4 n$ for $n \geq 3$ which we can present as

$$
\begin{aligned}
D_{2 n} & =\left\langle x, t \mid x^{2 n}=1, t^{2}=1, x t=t x^{-1}\right\rangle \\
Q_{n} & =\left\langle x, t \mid x^{2 n}=1, t^{2}=x^{n}, x t=t x^{-1}\right\rangle
\end{aligned}
$$

These presentations yield identical sets of reduced words:

$$
X=\left\{t^{a} x^{b} \mid a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{2 n}\right\}
$$

and they have a common automorphism group:

$$
\begin{gathered}
A=\left\{\phi_{(i, j)} \mid i \in \mathbb{Z}_{2 n}, j \in U\left(\mathbb{Z}_{2 n}\right)\right\} \\
\text { where } \phi_{(i, j)}\left(t^{a} x^{b}\right)=t^{i a} x^{i a+j b}
\end{gathered}
$$

which is naturally embedded as a subgroup of $B=\operatorname{Perm}(X)$.

Beyond this, one can show that not only do we have an isomorphism

$$
\operatorname{Hol}\left(D_{2 n}\right) \cong \operatorname{Hol}\left(Q_{n}\right)
$$

as abstract groups, but also,[5, Proposition 4.10] the left regular representations of both yield the equality

$$
\operatorname{Hol}\left(D_{2 n}\right)=\operatorname{Hol}\left(Q_{n}\right)
$$

as subgroups of $\operatorname{Perm}(X)$ since one can show that:

$$
\begin{align*}
\rho_{Q}\left(x^{b}\right) \phi_{(i, j)} & =\rho_{D}\left(x^{b}\right) \phi_{(i, j)} \tag{3}\\
\rho_{Q}\left(t x^{b}\right) \phi_{(i, j)} & =\rho_{D}\left(t x^{b+n}\right) \phi_{(i+n, j)} \tag{4}
\end{align*}
$$

So in particular

$$
\left\{\rho_{D}\left(x^{b}\right), \rho_{D}\left(t x^{b+n}\right) \phi_{(n, 1)} \mid b \in \mathbb{Z}_{2 n}\right\}
$$

is a normal, regular subgroup of $\operatorname{Hol}\left(D_{2 n}\right)$ that is isomorphic to Q_{n}.
We make this point to show the potential distinction between

$$
\mathrm{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right) \text { as abstract groups }
$$

vs.

$$
\operatorname{Norm}_{\mathrm{B}}\left(\mu\left(G_{1}\right)\right)=\operatorname{Norm}_{\mathrm{B}}\left(\nu\left(G_{2}\right)\right)
$$

for regular representations μ and ν.

In particular we note this:

Proposition

Suppose that G_{1} and G_{2} are embedded in $B=\operatorname{Perm}(X)$ as a regular subgroups $\mu\left(G_{1}\right)$ and $\nu\left(G_{2}\right)$ where $\nu\left(G_{2}\right) \triangleleft \operatorname{Norm}_{\mathrm{B}}\left(\mu\left(G_{1}\right)\right)$.

If $\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$ as abstract groups, then $\operatorname{Norm}_{\mathrm{B}}\left(\nu\left(G_{2}\right)\right)=\operatorname{Norm}_{\mathrm{B}}\left(\mu\left(G_{1}\right)\right)$.

And the converse holds too, of course.
i.e. $\operatorname{Norm}_{\mathrm{B}}\left(\mu\left(G_{1}\right)\right) \leq \operatorname{NormB}\left(\nu\left(G_{2}\right)\right)$, which implies equality

What is not immediately obvious is whether having
$\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$ as abstract groups
implies that
$\operatorname{Norm}_{\mathrm{B}}\left(\mu\left(G_{1}\right)\right)=\operatorname{Norm}_{\mathrm{B}}\left(\nu\left(G_{2}\right)\right)$
for regular representations of $\mu\left(G_{1}\right)$ and $\nu\left(G_{2}\right)$ in some $B=\operatorname{Perm}(X)$.

Of course, if $\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$ then $\operatorname{Hol}\left(G_{1}\right)$ contains at least one normal subgroup \widehat{G}_{2}, that is isomorphic to G_{2}.

The issue is that, in the permutational setting,

$$
\widehat{G}_{2} \triangleleft \operatorname{Norm}_{\mathrm{B}}\left(G_{1}\right)
$$

does not necessarily imply that \widehat{G}_{2} is regular.
The smallest example seems to be in degree 24 which we will consider presently.

We start by observing that $\operatorname{Hol}\left(C_{4} \times D_{3}\right) \cong \operatorname{Hol}\left(C_{3} \rtimes D_{4}\right)$.
Consider the regular subgroup $G_{1}=\langle y, x, t\rangle \cong C_{4} \times D_{3}$ of S_{24} where

$$
\begin{aligned}
& y=(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24) \\
& x=(1,5,12)(2,16,8)(3,10,18)(4,11,19)(6,21,14)(7,22,15)(9,17,23)(13,24,20) \\
& t=(1,2)(3,6)(4,7)(5,8)(9,13)(10,14)(11,15)(12,16)(17,20)(18,21)(19,22)(23,24)
\end{aligned}
$$

Within $\operatorname{Norm}_{S_{24}}\left(G_{1}\right)$ is contained

$$
\widehat{G}_{2}=\langle\widehat{a}, \widehat{b}, \widehat{c}\rangle \cong C_{3} \rtimes D_{4}
$$

where

$$
\begin{aligned}
& \widehat{a}=(1,5,12)(2,8,16)(3,17,18,9,10,23)(4,11,19)(6,20,21,13,14,24)(7,15,22) \\
& \widehat{b}=(1,4)(2,7)(5,11)(8,15)(12,19)(16,22) \\
& \widehat{c}=(1,6)(2,3)(4,13)(5,21)(7,9)(8,18)(10,16)(11,24)(12,14)(15,23)(17,22)(19,20)
\end{aligned}
$$

which has the property that $\widehat{G}_{2} \triangleleft \operatorname{Norm}_{S_{24}}\left(G_{1}\right)$ but, as can be seen from the cycle structure, is non-regular.

So this demonstrates that being a normal subgroup of the correct isomorphism class does not imply regularity.

However, Norm $S_{24}\left(G_{1}\right)$ contains another normal subgroup isomorphic to $C_{3} \rtimes D_{4}$, which is actually regular.

Specifically, let $G_{2}=\langle a, b, c\rangle$ where

$$
\begin{aligned}
& a=(1,10,12,3,5,18)(2,21,8,6,16,14)(4,17,19,9,11,23)(7,24,15,13,22,20) \\
& b=(1,9)(2,13)(3,4)(5,17)(6,7)(8,20)(10,11)(12,23)(14,15)(16,24)(18,19)(21,22) \\
& c=(1,2)(3,13)(4,7)(5,8)(6,9)(10,20)(11,15)(12,16)(14,17)(18,24)(19,22)(21,23)
\end{aligned}
$$

so that $\operatorname{Norm}_{S_{24}}\left(G_{1}\right)=\operatorname{Norm}_{S_{24}}\left(G_{2}\right)$.

So what about $\operatorname{Norm}_{S_{24}}\left(\widehat{G}_{2}\right)$?
Since $\widehat{G}_{2} \triangleleft \operatorname{Norm}_{S_{24}}\left(G_{1}\right)$ then $\operatorname{Norm}_{S_{24}}\left(G_{1}\right)$ is contained in Norm $S_{24}\left(\widehat{G}_{2}\right)$.
But this is actually a proper containment, as
$\left|\operatorname{Norm}_{S_{24}}\left(G_{1}\right)\right|=\left|\operatorname{Hol}\left(C_{4} \times D_{3}\right)\right|=576$
while $\left|\operatorname{Norm}_{S_{24}}\left(\widehat{G}_{2}\right)\right|=1728$.

To further highlight the subtle relationship between the abstract and permutational holomorph, consider this example:

```
G1=
(1, 3, 5, 12)(2, 7, 9, 18)(4, 11, 14, 23)(6, 13, 16, 25)(8, 17, 20, 27)(10, 19, 22, 29)(15, 24, 26, 31)(21, 28, 30, 32)
(1,4)(2, 8)(3, 11)(5, 14)(6, 15)(7, 17)(9, 20)(10, 21)(12, 23)(13, 24)(16, 26)(18, 27)(19, 28)(22, 30)(25, 31)(29, 32)
(1,5)(2,9)(3,12)(4, 14)(6, 16)(7, 18)(8, 20) (10, 22) (11, 23)(13, 25) (15, 26) (17, 27) (19, 29)(21, 30) (24, 31)(28, 32)
(1, 6)(2, 10)(3, 13)(4, 15)(5, 16)(7, 19)(8, 21)(9, 22) (11, 24)(12, 25)(14, 26)(17, 28)(18, 29)(20, 30)(23, 31)(27, 32)
\cong(C4}\times\mp@subsup{C}{2}{}\times\mp@subsup{C}{2}{})\rtimes\mp@subsup{C}{2}{
\widehat{G}
<(4, 15)(8, 21)(11, 24)(14, 26)(17, 28)(20, 30)(23, 31)(27, 32),
(1,3,5,12)(2, 7, 9, 18)(4, 11, 14, 23)(6, 13, 16, 25)(8, 17, 20, 27)(10, 19, 22, 29)(15, 24, 26, 31)(21, 28, 30, 32),
(1,4,5,14)(2, 8, 9, 20)(3, 11, 12, 23)(6, 15, 16, 26)(7, 17, 18, 27)(10, 21, 22, 30)(13, 24, 25, 31)(19, 28, 29, 32)>
\congC4}\times\mp@subsup{D}{4}{
```

where now G_{1} is regular with $\widehat{G_{2}} \triangleleft \operatorname{Norm}_{S_{32}}\left(G_{1}\right)$ where, as abstract groups, $\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$.

However, not only is $\widehat{G_{2}}$ not regular but what is even more extraordinary is that, in fact, $\operatorname{Norm}_{S_{32}}\left(\widehat{G_{2}}\right)=$ Norm $_{S_{32}}\left(G_{1}\right)$ as subgroups of S_{32}.

We make the following definitions to highlight the (apparent) distinction between isomorphic abstract and permutational holomorphs, as well as their automorphism groups.

Definition

We say that two non-isomorphic finite groups G_{1} and G_{2} of the same order n have

- equivalent regular normalizers denoted $G_{1} \sim_{\mathfrak{n}} G_{2}$ if there exist regular representations $\mu\left(G_{1}\right) \leq B, \nu\left(G_{2}\right) \leq B$ with the property that $\operatorname{Norm}_{\mathrm{B}}\left(\mu\left(G_{1}\right)\right)=\operatorname{Norm}_{\mathrm{B}}\left(\nu\left(G_{2}\right)\right)$, where $B=\operatorname{Perm}(X)$ for $|X|=n$
- equivalent abstract holomorphs denoted $G_{1} \sim_{\mathfrak{h}} G_{2}$ if $\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$ as abstract groups
- equivalent automorphism groups denoted $G_{1} \sim_{\mathfrak{a}} G_{2}$ if $\operatorname{Aut}\left(G_{1}\right) \cong \operatorname{Aut}\left(G_{2}\right)$ as abstract groups

Given that

$$
|\operatorname{Hol}(G)|=|G| \cdot|\operatorname{Aut}(G)|
$$

then if G_{1} and G_{2} are presumably non-isomorphic groups of the same order, where $G_{1} \sim_{\mathfrak{h}} G_{2}$ then obviously $\left|\operatorname{Aut}\left(G_{1}\right)\right|=\left|\operatorname{Aut}\left(G_{2}\right)\right|$.

We should point out that $G_{1} \sim_{\mathfrak{a}} G_{2}$ does not imply that $G_{1} \sim_{\mathfrak{h}} G_{2}$.
So we ask, if $G_{1} \sim_{\mathfrak{h}} G_{2}$ then must it be the case that $G_{1} \sim_{\mathfrak{a}} G_{2}$?
We can say this at least in the permuational setting.

Proposition

If G_{1} and G_{2} are non-isomorphic groups of the same order and $G_{1} \sim_{\mathfrak{n}} G_{2}$ then one must have that $G_{1} \sim_{\mathfrak{a}} G_{2}$.

Proof.

For N a regular subgroup of $B=\operatorname{Perm}(X)$, we recall that $\operatorname{Norm}_{\mathrm{B}}(N)=N^{\text {Opp }} A_{z}$ where A_{z} is the stabilizer in $\operatorname{Norm}_{\mathrm{B}}(N)$ of any point, which as we observed earlier is isomorphic to $\operatorname{Aut}(N)$. As such, if $\operatorname{Norm}_{\mathrm{B}}\left(\mu\left(G_{1}\right)\right)=\operatorname{Norm} \mathrm{N}_{\mathrm{B}}\left(\nu\left(G_{2}\right)\right)$ then A_{z} must be simultaneously isomorphic to $\operatorname{Aut}\left(G_{1}\right)$ and $\operatorname{Aut}\left(G_{2}\right)$.

All of this points to an intriguing possible contrast between the abstract holomorph and the normalizer of a regular representation.

If for G_{1} and G_{2} of the same order we have that $G_{1} \sim_{\mathfrak{h}} G_{2}$, but $G_{1} \not \chi_{\mathfrak{a}} G_{2}$ then the above result implies that $G_{1} \not \chi_{\mathfrak{n}} G_{2}$.

Circling back to Hopf-Galois theory for a moment, if $G_{1} \sim_{\mathfrak{n}} G_{2}$ then $\left|R\left(\Gamma,\left[G_{1}\right]\right)\right|=\left|R\left(\Gamma,\left[G_{2}\right]\right)\right|$ but it is not clear that this is holds if merely $G_{1} \sim_{\mathfrak{h}} G_{2}$.

The presenter is not aware, however, of any examples of pairs of groups of the same order where $G_{1} \sim_{\mathfrak{h}} G_{2}$ but $G_{1} \not \chi_{\mathfrak{n}} G_{2}$ or $G_{1} \not \chi_{\mathfrak{a}} G_{2}$.

In general, our conjecture is that $G_{1} \sim_{\mathfrak{h}} G_{2}$ implies that $G_{1} \sim_{\mathfrak{n}} G_{2}$ although the examples above do call this into question.

Note by the way, that for the degree 32 example above, the group
$\widehat{G_{2}}=$
$\langle(1,10)(2,6)(3,7)(4,8)(5,22)(9,16)(11,28)(12,18)(13,19)(14,20)(15,21)(17,24)(23,32)(25,29)(26,30)(27,31)$,
$(1,26,16,4)(2,20,22,21)(3,31,25,11)(5,15,6,14)(7,27,29,28)(8,10,30,9)(12,24,13,23)(17,19,32,18)$,
$(1,28,16,27)(2,31,22,11)(3,20,25,21)(4,29,26,7)(5,32,6,17)(8,13,30,12)(9,24,10,23)(14,19,15,18)\rangle$
is a regular normal subgroup of $\operatorname{Norm}_{S_{32}}\left(G_{1}\right)$, isomorphic to G_{2}, and so

$$
\operatorname{Norm}_{S_{32}}\left(G_{1}\right)=\operatorname{Norm}_{S_{32}}\left(\widehat{G_{2}}\right)
$$

Going forward, we will briefly examine the abstract equivalence $G_{1} \sim_{\mathfrak{h}} G_{2}$ itself, but for the most part we will be focused on those examples for which we can establish that $G_{1} \sim_{\mathfrak{n}} G_{2}$.

Starting in low order we will consider pairs $\left(G_{1}, G_{2}\right)$ for which there exist regular representations which have equal normalizers within a given $B=\operatorname{Perm}(X)$.

Sidebar - Connection To Braces

We point out that if two non-isomorphic groups G_{1} and G_{2} have presentations yielding a common set of reduced words X, then we have two different group operations $G_{1} \cong(X, \circ)$ and $G_{2} \cong(X, \star)$.

And if $G_{1} \sim_{\mathfrak{n}} G_{2}$ then (X, \circ, \star) and (X, \star, \circ) are simultaneously skew-braces, yielding, in fact, a bi-skew brace structure on X.

In particular, the fact that $G_{1} \sim_{\mathfrak{n}} G_{2}$ implies that their common automorphism group yields an automorphism of this bi-skew brace.

Indeed, we observe (for future reference) that if (X, \circ, \star) has a bi-skew brace structure, then there is a common subgroup $A \leq \operatorname{Aut}\left(G_{1}\right) \cap \operatorname{Aut}\left(G_{2}\right)$ for which we (likely) have an isomorphism

$$
G_{1} \rtimes A \cong G_{2} \rtimes A
$$

of the relative holomorphs of each.
The point we make is that the study of when $G_{1} \sim_{\mathfrak{n}} G_{2}$, is a special case of the study of bi-skew braces...
or perhaps bi-skew braces yield a generalization of the study of isomorphic holomorphs, in this case the isomorphism of relative holomorphs.
(This is an idea still in progress...)

Examples of Isomorphic Holomorphs

The smallest example of a pair of non-isomorphic groups of equal order, with isomorphic holomorphs, are D_{6} and Q_{3} of order 12.

Beyond $D_{2 n}$ and Q_{n} there are are other pairs.
One basic method for generating examples, is to start with two groups, say D and Q of the same order m, where $\operatorname{Hol}(D) \cong \operatorname{Hol}(Q)$.

If now we choose any group Y whose order is relatively prime to m then

$$
\operatorname{Aut}(D \times Y) \cong \operatorname{Aut}(D) \times \operatorname{Aut}(Y)
$$

and

$$
\operatorname{Aut}(Q \times Y) \cong \operatorname{Aut}(Q) \times \operatorname{Aut}(Y)
$$

which allows us to deduce that

$$
\operatorname{Hol}(D \times Y) \cong \operatorname{Hol}(D) \times \operatorname{Hol}(Y) \cong \operatorname{Hol}(Q) \times \operatorname{Hol}(Y) \cong \operatorname{Hol}(Q \times Y)
$$

Beyond this, there are other direct products that can be formed for which the automorphism group correspondingly splits as a direct product, even if the factors do not have relatively prime orders.

In Bidwell et. al.[1] the authors show the following.

Proposition

[1, Corollary 3.8] Let $G=H \times K$ where H and K have no common direct factor and $\operatorname{gcd}\left(\left|H / H^{\prime}\right|,|Z(K)|\right)=1$ and $\operatorname{gcd}\left(\left|K / K^{\prime}\right|,|Z(H)|\right)=1$ then $\operatorname{Aut}(G)=\operatorname{Aut}(H) \times \operatorname{Aut}(K)$.

Facts: $\left|D_{2 n} / D_{2 n}^{\prime}\right|=4,\left|Q_{n} / Q_{n}^{\prime}\right|=4$ and $\left|Z\left(D_{2 n}\right)\right|=\left|Z\left(Q_{n}\right)\right|=2$ for all n.
Moreover, one has that Q_{n} is indecomposable for all $n, D_{2 n}$ is indecomposable for n even and that the only direct product decomposition of $D_{2 n}$ for n odd is as $D_{n} \times C_{2}$.

Thus, if Y is not D_{n} or C_{2} then

$$
\operatorname{gcd}(4,|Z(Y)|)=1 \text { and } \operatorname{gcd}\left(\left|Y / Y^{\prime}\right|, 2\right)=1
$$

is sufficient to guarantee that $\operatorname{Hol}\left(D_{2 n} \times Y\right) \cong \operatorname{Hol}\left(Q_{n} \times Y\right)$.
So for example, this obviously holds if Y is any odd order group.
The first pair which is not a $D_{2 n} / Q_{n}$ or a direct product thereof are to be found in degree 24.

Specifically, let G_{5} and G_{8} denote groups 5 and 8 in the SmallGroups library for groups of order 24 , which we present as follows:

$$
\begin{aligned}
& G_{5}=\left\langle u, v, t \mid u^{3}, v^{4}, t^{2}, v u v^{-1} u, t u t^{-1} u, t v t^{-1} v^{-1}\right\rangle \\
& G_{8}=\left\langle u, v, t \mid u^{3}, v^{4}, t^{2}, v u v^{-1} u, t u t^{-1} u, t v t^{-1} v\right\rangle
\end{aligned}
$$

where, in each, the subgroup $\langle u, v\rangle$ is isomorphic to $Q_{3}=C_{3} \rtimes C_{4}$, but where the difference is in the action of t on v.

The (common) automorphism group is

$$
\mathcal{A}=\left\langle c_{u}, c_{t}, \alpha, \beta\right\rangle
$$

where c_{u} and c_{t} denote conjugation by u and t (in both groups) and where α, β are two outer automorphisms which act as follows:

$$
\begin{array}{ll}
\alpha(u)=u & \beta(u)=u \\
\alpha(v)=v^{-1} & \beta(v)=v^{-1} \\
\alpha(t)=v^{2} t & \beta(t)=t
\end{array}
$$

Given the presentations, we have, similar to what happens in $D_{2 n}$ and Q_{n}, that as sets, both G_{5} and G_{8} consist of a common set of reduced words $X=\left\{u^{i} v^{j} t^{k}\right\}$.

As such, their regular representations naturally embed as regular subgroups of $\operatorname{Perm}(X)$, and $\mathcal{A} \leq \operatorname{Perm}(X)$ as well.

And as to the equality of their holomorphs, we have that

$$
\begin{aligned}
\rho_{G_{5}}(u) & =\rho_{G_{8}}(u) \\
\rho_{G_{5}}(t) & =\rho_{G_{8}}(t) \\
\rho_{G_{5}}(v) & =\rho_{G_{8}}(v) \alpha \beta
\end{aligned}
$$

so, as subgroups of $\operatorname{Perm}(X), \operatorname{Norm}_{B}\left(G_{5}\right)=\operatorname{Norm}_{B}\left(G_{8}\right)$, that is, $G_{5} \sim_{\mathfrak{n}} G_{8}$.

In degree 32 there are many interesting examples, and we list them here, with their index in the SmallGroups library in brackets

$$
\begin{array}{rlr}
\left(C_{8} \times C_{2}\right) \rtimes C_{2} \sim_{\mathfrak{n}} Q_{2} \rtimes C_{4} & {[9],[10]} \\
D_{16} & \sim_{\mathfrak{n}} Q_{8} & {[18],[20]} \\
C_{2} \times D_{8} & \sim_{\mathfrak{n}} C_{2} \times Q_{4} & {[39],[41]} \\
C_{8} \rtimes\left(C_{2} \times C_{2}\right) & \sim_{\mathfrak{n}}\left(C_{2} \times Q_{2}\right) \rtimes C_{2} & {[43],[44]}
\end{array}
$$

and, which first happens in degree 32, a triple of groups

$$
C_{4} \times D_{4} \sim_{\mathfrak{n}}\left(C_{4} \times C_{2} \times C_{2}\right) \rtimes C_{2} \sim_{\mathfrak{n}}\left(C_{2} \times Q_{2}\right) \rtimes C_{2} \text { [25], [28], [29] }
$$

The pair $\left(D_{16}, Q_{8}\right)$ is, of course already known.
For ($C_{2} \times D_{8}, C_{2} \times Q_{4}$), we again reference Bidwell et. al. who actually show the following about automorphisms of direct products.

Proposition

[1, Theorem 3.2] If H and K have no common direct factor then each $\theta \in \operatorname{Aut}(H \times K)$ corresponds to a matrix $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$ where $\alpha \in \operatorname{Aut}(H)$, $\beta \in \operatorname{Hom}(K, Z(H)), \gamma \in \operatorname{Hom}(H, Z(K))$, and $\delta \in \operatorname{Aut}(K)$

Thus $\operatorname{Hol}\left(D_{8}\right) \cong \operatorname{Hol}\left(Q_{4}\right)$ implies $\operatorname{Hol}\left(C_{2} \times D_{8}\right) \cong \operatorname{Hol}\left(C_{2} \times Q_{4}\right)$.

The groups G_{5} and G_{8} were be presented as split extensions $K \rtimes Q$ and $\widehat{K} \rtimes \widehat{Q}$ where $K \cong \widehat{K}$ and $Q \cong \widehat{Q}$ yielding groups on a common set X.

And their automorphism groups and holomorphs were identical as subgroups of $\operatorname{Perm}(X)$.

We can do basically the same thing with $G_{9}=C_{8} \rtimes\left(C_{2} \times C_{2}\right)$ and $G_{10}=\left(C_{2} \times Q_{2}\right) \rtimes C_{2}$ but instead of presenting them as split extensions with the same kernel and quotient, we can present them both as follows

$$
\begin{aligned}
G_{9} & =\left\langle y, x, t \mid y^{4}, x^{4}, t^{2},[x, y] y^{2},[t, y] y^{2},[t, x] y\right\rangle \\
G_{10} & =\left\langle y, x, t \mid y^{4}, x^{4}, t^{4},[x, y] y^{2},[t, y] y^{2},[t, x] y, t^{2} y^{2}\right\rangle
\end{aligned}
$$

namely that both G_{9} and G_{10} are extensions of

$$
\left\langle y, x \mid y^{4}, x^{4},[x, y] y^{2}\right\rangle \cong C_{4} \rtimes C_{4}
$$

but while G_{9} is a split extension of this kernel, G_{10} is not, which is similar to the difference between $D_{2 n}$ which is split, while Q_{n} is not.

Regardless, both G_{9} and G_{10} consists of the reduced words $X=\left\{y^{i} x^{j} t^{k}\right\}$ and they have a common automorphism group \mathcal{A} generated by the following automorphisms

	α	β	τ_{1}	τ_{2}	τ_{3}
y	y	y^{-1}	y	y	y
x	$y^{-1} x$	$y^{-1} x$	x	x^{-1}	x
t	$y t$	t	$x^{2} t$	t	$y^{2} t$

For $B=\operatorname{Perm}(X)$ with G_{9} embedded as $\rho_{G_{9}}(X)$ and G_{10} embedded as $\rho_{G_{10}}(X)$, the equality of their normalizers is established by verifying that

$$
\begin{aligned}
& \rho_{G_{10}}(t)=\rho_{G_{9}}(t) \tau_{3} \\
& \text { or equivalently } \\
& \rho_{G_{9}}(t)=\rho_{G_{10}}(t) \tau_{3}
\end{aligned}
$$

The 'triple'

$$
C_{4} \times D_{4} \sim_{\mathfrak{n}}\left(C_{4} \times C_{2} \times C_{2}\right) \rtimes C_{2} \sim_{\mathfrak{n}}\left(C_{2} \times Q_{2}\right) \rtimes C_{2} \text { [25], [28], [29] }
$$

is interesting not only because this is the first example of three groups with mutually equivalent normalizers, but it also presented a number of challenges computationally.

For a given selection of presentations, yielding a common set of reduced words, the difficulty was that the corresponding automorphism groups (while isomorphic) would not act identically as permutations of this set of reduced words.

For example, if we refer to these groups as G_{25}, G_{28}, and G_{29}, we have that

$$
\begin{aligned}
& G_{25} \cong\left\langle x, y, z \mid x^{4}, y^{4}, z^{4}, x^{2} z^{2},(x y)^{2},[x, z],[y, z]\right\rangle \\
& G_{28} \cong\left\langle x, y, z \mid x^{4}, y^{4}, z^{4}, x^{2} z^{2},(x y)^{2},[x, z],[y, z] z^{2}\right\rangle \\
& G_{29} \cong\left\langle x, y, z \mid x^{4}, y^{4}, z^{4}, x^{2} z^{2},(x y)^{2},[x, z] z^{2},[y, z] z^{2}\right\rangle
\end{aligned}
$$

which results in group structures on the common set

$$
X=\left\{x^{i} y^{j} z^{k} \mid i, j \in\{0 \ldots 3\}, k \in\{0,1\}\right\}
$$

but for these presentations, there are elements of the (mutually isomorphic) automorphism group \mathcal{A} that act distinctly as permutations of X.

A successful choice we discovered was this one

$$
\begin{aligned}
& G_{25} \cong\langle x, y, z, w| x^{4}, y^{4}, z^{4}, w^{4},[x, z],[x, w],[z, w], \\
& \left.\quad x^{2} w^{2},[y, x] x^{2},[w, y] x^{2}, y^{2} w^{-1} x, z^{2}\left(x w^{-1}\right),[y, z] x^{2}\right\rangle \\
& G_{28} \cong\langle x, y, z, w| x^{4}, y^{4}, z^{4}, w^{4},[x, z],[x, w],[z, w], \\
& \left.\quad x^{2} w^{2},[y, x] x^{2},[w, y] x^{2}, y^{2}(x w)^{-1}, z^{2} x^{2}, z y z^{-1} w^{-1} y^{-1} x^{-1}\right\rangle \\
& G_{29} \cong\langle x, y, z, w| x^{4}, y^{4}, z^{4}, w^{4},[x, z],[x, w],[z, w], \\
& \left.\quad x^{2} w^{2},[y, x] x^{2},[w, y] x^{2}, y^{2} w^{-1} x, z^{2} x^{2}, z y z^{-1} w^{-1} y^{-1} x^{-1},\right\rangle
\end{aligned}
$$

where all are groups on the common set of words $X=\left\{x^{i} y^{j} z^{k} w^{\prime} \mid i \in\{0 \ldots 3\}, j, k, l \in\{0,1\}\right\}$.

The common automorphism group, $\mathcal{A} \cong C_{2} \times\left(C_{2}^{2} \backslash C_{2}\right)$, is of order 128 and is group 2163 in the AllSmallGroups library with presentation
$\langle a, b, c, d, e, f, g| a^{2}, b^{2}, c^{2}, d^{2}, e^{2}, f^{2}, g^{2},[a, b],[a, c],[a, d],[a, e],[a, f],[a, g]$, $[b, c],[b, d],[b, e],[b, f],[b, g],[c, d], g c g e c,[c, f],[d, e], g d g f d$, $[e, f],[e, g],[f, g]\rangle$
where the generators $\{a, \ldots, g\}$ act as follows on $\{x, y, z, w\}$:

	a	b	c	d	e	f	g
x	x	x	$x^{2} w$	w	x	x	x^{3}
y	$x y w$	$x^{2} y$	$x^{2} y$	$x^{2} y$	$x^{3} y w$	$x y w$	$x y$
z	$x^{3} z w$	$x^{2} z$	$x^{3} z w$	$x^{2} z$	z	z	z
w	w	w	x^{3}	x	w	w	$x^{2} w$

And as far as the normalizer equivalence, one can show the following containments of $\rho\left(G_{28}\right)$ and $\rho\left(G_{29}\right)$ in $\operatorname{Norm}_{\mathrm{B}}\left(G_{25}\right)$:

$$
\begin{aligned}
& \rho_{G_{28}}(x)=\rho_{G_{25}}(w) f \\
& \rho_{G_{28}}(y)=\rho_{G_{25}}\left(x^{2} y\right) b d e f \\
& \rho_{G_{28}}(z)=\rho_{G_{25}}\left(x^{3} z w\right) \text { aef } \\
& \rho_{G_{28}}(w)=\rho_{G_{25}}(x) f \\
& \\
& \rho_{G_{29}}(x)=\rho_{G_{25}}(w) f \\
& \rho_{G_{29}}(y)=\rho_{G_{25}}(y) b d \\
& \rho_{G_{29}}(z)=\rho_{G_{25}}\left(x^{3} z w\right) a e f \\
& \rho_{G_{29}}(w)=\rho_{G_{25}}(x) f
\end{aligned}
$$

and each is a normal regular subgroup of $\operatorname{Norm}_{\mathrm{B}}\left(G_{25}\right)$ establishing the normalizer equivalence.

Beyond degree 32, we have calculated all other 'clusters' of groups with equivalent normalizers, up to order 60.

We present a summary of groups with isomorphic holomorphs of all orders at most 60 in Tables 1 and 2.

Two observations/conjectures:

- If n is odd then $G_{1} \sim_{\mathfrak{n}} G_{2}$ only if $G_{1} \cong G_{2}$.
- If $G_{1} \sim_{\mathfrak{n}} G_{2}$ then $4 \mid n$.

And of course our principal conjecture (question?) is that $G_{1} \sim_{\mathfrak{h}} G_{2}$ implies $G_{1} \sim_{\mathfrak{n}} G_{2}$.

n	$G_{i} \sim_{\mathfrak{n}} G_{j}$	SmallGroups ID's
12	$Q_{3} \sim_{\mathfrak{n}} D_{6}$	1,4
16	$Q_{4} \sim_{\mathfrak{n}} D_{8}$	7,9
20	$Q_{5} \sim_{\mathfrak{n}} D_{10}$	1,4
24	$Q_{6} \sim_{\mathfrak{n}} D_{12}$	4,6
	$C_{4} \times S_{3} \sim_{\mathfrak{n}}\left(C_{6} \times C_{2}\right) \rtimes C_{2}$	9,10
28	$Q_{7} \sim_{\mathfrak{n}} D_{14}$	1,3
32	$\left(C_{8} \times C_{2}\right) \rtimes C_{2} \sim_{\mathfrak{n}} Q_{2} \rtimes C_{4}$	9,10
	$Q_{8} \sim_{\mathfrak{n}} D_{16}$	20,18
	$C_{4} \times D_{4} \sim_{\mathfrak{n}}\left(C_{4} \times C_{2} \times C_{2}\right) \rtimes C_{2} \sim_{\mathfrak{n}}\left(C_{2} \times Q_{2}\right) \rtimes C_{2}$	$25,28,29$
	$C_{2} \times D_{8} \sim_{\mathfrak{n}} C_{2} \times Q_{4}$	39,41
	$C_{8} \rtimes\left(C_{2} \times C_{2}\right) \sim_{\mathfrak{n}}\left(C_{2} \times Q_{2}\right) \rtimes C_{2}$	43,44
36	$Q_{9} \sim_{\mathfrak{n}} D_{18}$	1,4
	$C_{3} \times Q_{3} \sim_{\mathfrak{n}} C_{3} \times D_{6}$	6,12
	$\left(C_{3} \times C_{3}\right) \rtimes C_{4} \sim_{\mathfrak{n}} C_{2} \times\left(\left(C_{3} \times C_{3}\right) \rtimes C_{2}\right)$	7,18
40	$Q_{10} \sim_{\mathfrak{n}} D_{20}$	4,6
	$C_{4} \times D_{5} \sim_{\mathfrak{n}}\left(C_{10} \times C_{2}\right) \rtimes C_{2}$	5,8
44	$Q_{11} \sim_{\mathfrak{n}} D_{22}$	1,3

Table: Groups with Isomorphic Holomorphs of order $n \leq 44$

n	$G_{i} \sim_{\mathfrak{n}} G_{j}$	SmallGroups ID's
48	$C_{8} \times S_{3} \sim_{\mathfrak{n}} C_{24} \rtimes C_{2}$	4,5
	$Q_{12} \sim_{\mathfrak{n}} D_{24}$	8,7
	$C_{4} \times Q_{3} \sim_{\mathfrak{n}}\left(C_{6} \times C_{2}\right) \rtimes C_{4}$	11,19
	$\left(C_{3} \rtimes C_{4}\right) \rtimes C_{4} \sim_{\mathfrak{n}}\left(C_{12} \times C_{2}\right) \rtimes C_{2}$	12,14
	$\left(C_{3} \times D_{4}\right) \rtimes C_{2} \sim_{\mathfrak{n}}\left(C_{3} \rtimes Q_{2}\right) \rtimes C_{2} \sim_{\mathfrak{n}}\left(C_{3} \times Q_{2}\right) \rtimes C_{2} \sim_{\mathfrak{n}} C_{3} \rtimes Q_{4}$	$15,16,17,18$
	$C_{3} \times D_{8} \sim_{\mathfrak{n}} C_{3} \times Q_{4}$	25,27
	$C S U_{2}\left(\mathbb{F}_{3}\right) \sim_{\mathfrak{n}} G L_{2}\left(\mathbb{F}_{3}\right)$	28,29
	$A_{4} \rtimes C_{4} \sim_{\mathfrak{n}} C_{2} \times S_{4}$	30,48
	$C_{2} \times S L_{2}\left(\mathbb{F}_{3}\right) \sim_{\mathfrak{n}}\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right) \rtimes C_{3}$	32,33
	$C_{2} \times Q_{6} \sim_{\mathfrak{n}} C_{2} \times D_{12}$	34,36
	$C_{2} \times\left(C_{4} \times S_{3}\right) \sim_{\mathfrak{n}} C_{2} \times\left(\left(C_{6} \times C_{2}\right) \rtimes C_{2}\right)$	35,43
	$D_{4} \times S_{3} \sim_{\mathfrak{n}}\left(C_{4} \times S_{3}\right) \rtimes C_{2}$	38,39
52	$Q_{2} \times S_{3} \sim_{\mathfrak{n}}\left(C_{4} \times S_{3}\right) \rtimes C_{2}$	40,41
56	$Q_{13} \sim_{\mathfrak{n}} D_{26}$	1,4
	$Q_{14} \sim_{\mathfrak{n}} D_{28}$	3,5
60	$C_{4} \times D_{7} \sim_{\mathfrak{n}}\left(C_{14} \times C_{2}\right) \rtimes C_{2}$	4,7
	$C_{5} \times\left(C_{3} \rtimes C_{4}\right) \sim_{\mathfrak{n}} C_{10} \times S_{3}$	1,11
	$C_{3} \times\left(C_{5} \rtimes C_{4}\right) \sim_{\mathfrak{n}} C_{6} \times D_{5}$	2,10
	$Q_{15} \sim_{\mathfrak{n}} D_{30}$	3,12

Table: Groups with Isomorphic Holomorphs of order $48 \leq n \leq 60$

回 J．Bidwell，M．Curran，and D．McCaughan．
Automorphisms of direct products of finite groups．
Arch．Math．，86：481489， 2006.
圊 J．Dixon．
Maximal abelian subgroups of the symmetric groups．
Canadian J．Math，23：426－438， 1971.
圊 Cornelius Greither and Bodo Pareigis．
Hopf Galois theory for separable field extensions．
J．Algebra，106：239－258， 1987.
固 M．Hall．
The Theory of Groups．
Macmillan，New York， 1959.
圊 T．Kohl．
Groups of order 4p，twisted wreath products and Hopf－Galois theory． J．Algebra，314：42－74， 2007.

T．Kohl．

Multiple holomorphs of dihedral and quaternionic groups.
Comm. Alg., 43:4290-4304, 2015.
R W.H. Mills.
On the non-isomorphism of certain holomorphs.
Trans. Amer. Math. Soc., 74:428-443, 1953.
A. Smoktunowicz and L. Vendramin.

On skew braces (with an appendix by N. Byott and L. Vendramin). J. Comb. Algebra, 2:47-86, 2018.

